Entropically patchy particles: engineering valence through shape entropy.

نویسندگان

  • Greg van Anders
  • N Khalid Ahmed
  • Ross Smith
  • Michael Engel
  • Sharon C Glotzer
چکیده

Patchy particles are a popular paradigm for the design and synthesis of nanoparticles and colloids for self-assembly. In "traditional" patchy particles, anisotropic interactions arising from patterned coatings, functionalized molecules, DNA, and other enthalpic means create the possibility for directional binding of particles into higher-ordered structures. Although the anisotropic geometry of nonspherical particles contributes to the interaction patchiness through van der Waals, electrostatic, and other interactions, how particle shape contributes entropically to self-assembly is only now beginning to be understood. The directional nature of entropic forces has recently been elucidated. A recently proposed theoretical framework that defines and quantifies directional entropic forces demonstrates the anisotropic-that is, patchy-nature of these emergent, attractive forces. Here we introduce the notion of entropically patchy particles as the entropic counterpart to enthalpically patchy particles. Using three example "families" of shapes, we show how to modify entropic patchiness by introducing geometric features to the particles via shape operations so as to target specific crystal structures assembled here with Monte Carlo simulations. We quantify the emergent entropic valence via a potential of mean force and torque. We show that these forces are on the order of a few kBT at intermediate densities below the onset of crystallization. We generalize these shape operations to shape anisotropy dimensions, in analogy with the anisotropy dimensions introduced for enthalpically patchy particles. Our findings demonstrate that entropic patchiness and emergent valence provide a way of engineering directional bonding into nanoparticle systems, whether in the presence or absence of additional, non-entropic forces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Patchy colloids: entropy stabilizes open crystals.

S purred by recent advances in microparticle synthesis, colloidal particles with 'sticky patches' on their surface have of late become a focus of interest. This is in great part because colloids with anisotropic, patchy interactions should allow better control of colloidal self-assembly so as to achieve specific target structures with tailored photonic, catalytic or mechanical properties 1. Man...

متن کامل

Entropic effects in the self-assembly of open lattices from patchy particles.

Open lattices are characterized by low-volume-fraction arrangements of building blocks, low coordination number, and open spaces between building blocks. The self-assembly of these lattices faces the challenge of mechanical instability due to their open structures. We theoretically investigate the stabilizing effects of entropy in the self-assembly of open lattices from patchy particles. A prel...

متن کامل

Calculation of partition functions for the self-assembly of patchy particles.

Partition functions encode all the thermodynamics of a system, but for most systems of practical importance, they cannot be calculated exactly. In this work we present a new hierarchical method for calculating partition functions to arbitrary precision. We discuss the algorithmic details of our implementation, including elements of shape-matching and entropy calculation for on-lattice and off-l...

متن کامل

Capillarity-induced directed self-assembly of patchy hexagram particles at the air-water interface.

Directed self-assembly can produce ordered or organized superstructures from pre-existing building blocks through pre-programmed interactions. Encoding desired information into building blocks with specific directionality and strength, however, poses a significant challenge for the development of self-assembled superstructures. Here, we demonstrate that controlling the shape and patchiness of p...

متن کامل

Entropic forces stabilize diverse emergent structures in colloidal membranes.

The depletion interaction mediated by non-adsorbing polymers promotes condensation and assembly of repulsive colloidal particles into diverse higher-order structures and materials. One example, with particularly rich emergent behaviors, is the formation of two-dimensional colloidal membranes from a suspension of filamentous fd viruses, which act as rods with effective repulsive interactions, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ACS nano

دوره 8 1  شماره 

صفحات  -

تاریخ انتشار 2014